PRRELIMINARY REPORT CAMBRIA AMD TASK FORCE PASSIVE TREATMENT SYSTEM EVALUATION

ACID MINE DRAINAGE ABATEMENT PROJECT LITTLE MILL CREEK CLARION TOWNSHIP, CLARION COUNTY, PA

Prepared By: Douglas Stewart L. P.G., Jeffrey J. Westrick P.E., Jon Smoyer L.P.G. January 28, 2009

PROJECT NO:AMD 16(1175)101.1PROJECT NAME:LITTLE MILL CREEK (Site A *aka* Hanlon and Site B *aka* Kotchey B)PROJECT LOCATION:Clarion Township, Clarion CountyRECEIVING STREAM:Unnamed tributary to and Little Mill Creek

PROJECT GOALS:

- Improve Water Quality in Little Mill Creek and Mill Creek.
- Restore aquatic life and recreational activities to the receiving streams.
- Abate water pollution from two separate discharges known as the Hanlon and Kotchey discharges.

PROJECT INFORMATION:

- Project was designed by Jeffrey J. Westrick P.E., and Max Scheeler, BAMR, Cambria office.
- Plans were sealed by Eric E Cavazza P.E.
- Contractor: Neiswonger Construction Inc., Strattanville, PA
- BAMR Construction engineer: Tom Malesky P.E
- Inspector supervisor: Allen Pletcher
- Project inspector: Lawrence Alexander
- Construction period: June 21, 2002 December 28, 2002
- Final construction cost of \$505,371.10

PROJECT DESIGN INFORMATION:

- A successive alkalinity producing system (SAPS) was constructed on Site A. The system consists of a collection pond discharging to two Vertical flow ponds (VFW) and sedimentation ponds in series. Treated water then flows into a through a wetland and discharged to a grass lined waterway. A flushing pond is constructed to flush either VFW.
 - 1. Design life of twenty (20) years with a design flow of xxx gallons per minute (gpm)
 - 2. System capable of hydraulically handling a flow of xxxx gpm
 - 3. Influent pH ranges from 4.2. to 7.0
 - 4. Influent flow ranges from 3.5 to 45 gpm
 - 5. Influent acidity concentration ranges from -1.2 to 150.2 mg/l
 - 6. Influent iron concentration ranges from .08 to 2.09 mg/l
 - 7. Influent aluminum concentration ranges from .36 to 22.67 mg/l
- A passive treatment system consisting of a sandstone collection sump discharging to an anoxic limestone drain (ALD) with a settling pond on Site B was constructed.
 - 1. Design life of twenty (25) years with a design flow of 175 gallons per minute (gpm)
 - 2. System capable of hydraulically handling a flow of xxxx gpm

- 3. Influent pH ranges from 6.0 to 7.0
- 4. Influent flow ranges are unknown.
- 5. Influent acidity concentration ranges from -34.6 to 152 mg/l
- 6. Influent iron concentration ranges from 71.1 to 118 mg/l
- 7. Influent aluminum concentration ranges from .5 to 1.0 mg/l

PROJECT DESCRIPTION:

- Treatment system schematic is shown in Appendix A for the Site A.
 - 1. AMD discharge is directed to a collection pond.
 - 2. A flow control structure controls the discharge to a Vertical flow pond (VFW).
 - 3. The water then flows to a sedimentation 9sed) basin.
 - 4. A second VFW is in place to treat the water.
 - 5. Flow from the VFW is measured at the flow control structure then discharging to a second sedimentation basin.
 - 6. A flushing pond is capable of flushing either VFW 1 or VFW 2.
 - 7. Water from the VFW's passes through a wetland prior to discharging.
- Treatment system schematic is shown in Appendix B for the Site B.
 - 1. AMD discharge from an abandoned gas well and unidentified mining source is collected in a sandstone sump and directed to an anoxic limestone drain (ALD).
 - 2. Influent flow is measured at the end of the center pipe.
 - 3. Effluent from the ALD is directed to a sedimentation basin; then discharged.
 - 4. Lagoon baffles were installed in the sediment pond to increase detention time due to increased water flow through the system.

PROJECT OPERATION, MAINTENANCE AND REPLACEMENT (OM&R) INFORMATION:

- System water sampling is performed quarterly.
- Flow data is not available for all sampling dates.
- Sampling point IDs are shown in Appendixes C and F.
- Sampling point locations are shown in Appendixes A and B.
- System flushing is performed two (2) to three (3) times per year.
- An Assessment of the Markle Passive Treatment System (Site B; Kotchey) was completed by Hedin Environmental through a Trout Unlimited Technical Assistance Program (TUTAG-27) The study was submitted to BAMR in June 2007. A copy of the consultant report can be found on the OM&R server site for Little Mill Creek. The report provided 5 options for repair and modification of the treatment system. A summary of the options follows:
 - Option 1. Control of the flow of water from the gas well to lesson the amount of water that the system treats.
 - Option 2. Modify the system to more effectively remove iron.
 - Option 3. Enlarge the system to more effectively treat the discharge.
 - Option 4. Combine Options 2 & 3 which requires additional property for treatment.
 - Option 5. Aeration of the discharge to improve iron removal.

WATERSHED RESTORATION INFORMATION:

- This project was one of numerous projects completed in the Mill Creek watershed. The treatment projects in the watershed are part of a broader agenda to improve the water quality in the Clarion River Basin.
- Little Mill Creek provides 25% of the total flow of Mill Creek. It is the first major tributary to detrimentally impact Mill Creek near its headwaters. It contributes 30% of the iron. 68% of the manganese, 56% of the aluminum, 705 of the acidity and 60% of the sulfates found in Mill Creek. (Headwaters Charitable Trust WR-4).
- Funding Partners:
 - 1. Mill Creek Watershed Coalition
 - 2. PADEP 319 Grants
 - 3. Trout Unlimited
 - 4. Pennsylvania Coalition for Abandoned Mine Drainage

PROPERTY OWNER INFORMATION:

- Site A is currently owned by Robert and Vicky Ishman, Corsica, PA. BAMR does not have easements from the Ishman's. The property was originally owned by Marvin and Judy Hanlon.
- Site B site is owned by Michael A. and Charles T. Kotchey, Pittsburgh, PA.
- The Consent for Right of Entry agreements obtained for this project are standard construction easements for building the treatment system and contain language for perpetual treatment.

SYSTEM PERFORMANCE EVALUATION:

- Site A Inspection: Not completed due to snow cover and frozen discharges. Access to the site via snowmobile on 1/21/09 confirmed no flow.
- Completed By: Jeffrey J. Westrick, Douglas Stewart, Jon Smoyer
- Observations: To be noted after snow cover melts.
- Site B Inspection: Not completed due to snow cover and frozen discharges.
- Completed By: Jeffrey J. Westrick, Douglas Stewart, Jon Smoyer
- Observations: To be noted after snow cover melts.

Water Quality Trends and System Performance: Site A

- 1. Influent water quality has remained consistent.
- 2. System effluent pH ranges from 4.2 to 5.7.
- 3. System still removing 400 to 500 mg/l of acidity; 1 to 2 mg/l of iron and 30 to 40 mg/l of aluminum.

Water Quality Trends and System Performance: Site B

- 1. Influent water quality has remained consistent.
- 2. System effluent pH ranges from 4.2 to 5.7.
- 3. System still removing xx to xx mg/l of acidity; xx to xx mg/l of iron and xx to xx mg/l of aluminum.
- 4 System flow rates exceed design flow rates.

PROJECT SUCCESS:

- 1. Site A is performing as designed.
- 2. Site B passive treatment system is not currently producing water quality as good as originally anticipated.

TASK FORCE RECOMMENDATIONS: Site A and Site B

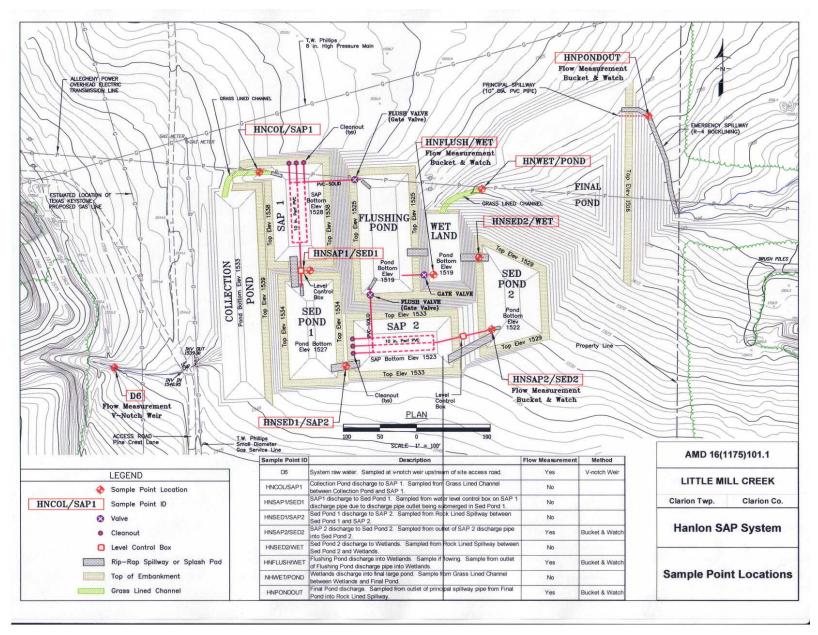
- As-Built Drawings need to be completed and recorded; particularly relating to the piping systems and critical system elevations.
- Any changes made during OM&R operations to the piping systems, valves, cleanouts, water levels, etc. need to be added to the original As-Built Drawings and recorded as revised As-Builts with dates.
- System water sampling needs to be performed consistently and at regular time intervals to provide for reliable system analysis.
- Accurate flow data needs to be collected at the same time as system water sampling to provide for reliable system analysis.
- Water sampling data needs to be recorded in one (1) central location and reviewed on a regular basis by the O&M Section to monitor system performance.
- Flow measurements, sample collection and data recording should be done by one (1) or two (2) people in the O&M Section to ensure reliability and accountability.
- All Right of Entry agreements; As-Built Drawings, sampling location points and descriptions, SIS IDs, sampling data and analysis, OM&R operations, system changes, dates, costs, etc. for each treatment system need to be recorded in one (1) central location by the O&M Section.
- A continuous flow recorder should be installed at any future site during project development to provide more accurate flow data to the project designer and could be reused over and over.
- A continuous flow recorder should be designed and built into the treatment system to provide more accurate and reliable flow data for system analysis by the O&M Section.

It must be considered in the final analysis of recommendations that an evaluation of Sites A and B utilizing the Risk Analysis Matrix presented in the *Mine Drainage Treatability and Project Selection Guidelines* June 10, 2008 would classify the risk of treatment as "very high".

SCOPE OF WORK RECOMMENDED: Site A

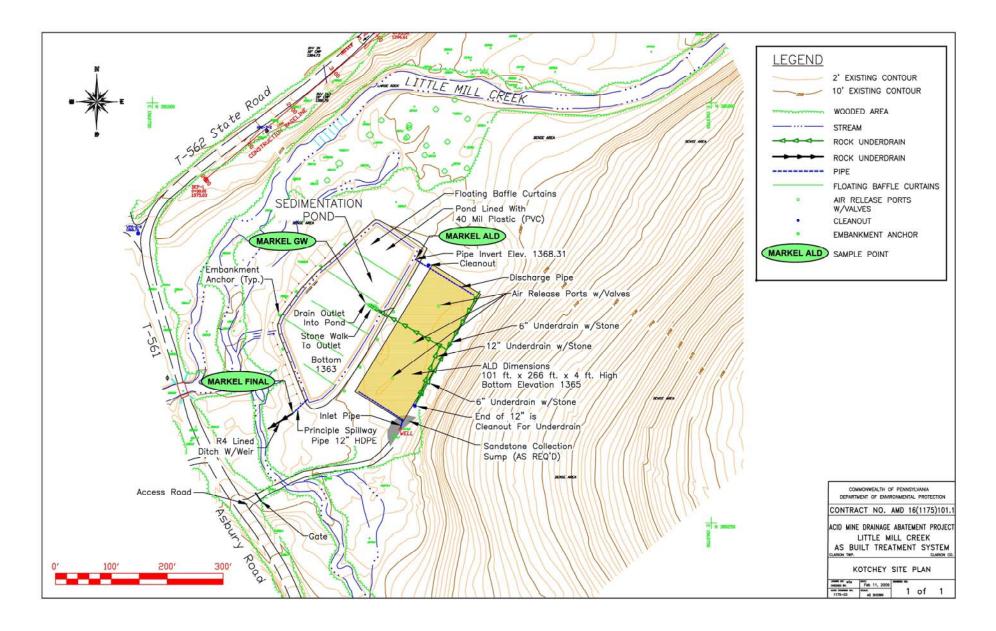
• Evaluation to be completed after snow cover melts.

SCOPE OF WORK RECOMMENDED: Site B


• Evaluation to be completed after snow cover melts.

ATTACHMENTS:

- Appendix A: Site A Schematic And Sample Point Locations.
- Appendix B: Site B Schematic And Sample Point Locations.
- Appendix C: SIS Sampling Point IDs for the Site A.
- Appendix D: SIS Sampling Point Inventory Form for the Site A.
- Appendix E: Water quality Summary sheet for the Site A.
- Appendix F: SIS Sampling Point IDs for the Site B.
- Appendix G: SIS Sampling Point Inventory Form for the Site B.
- Appendix H: Water quality Summary sheet for the Site B.
- Appendix I: Little Mill Creek Location Map
- Appendix J: Directions to the Project Site


APPENDIX A

SITE A SCHEMATIC AND SAMPLE POINT LOCATIONS

APPENDIX B

SITE B SCHEMATIC AND SAMPLE POINT LOCATIONS

Appendix J

Directions to Site:

Start - 286 Industrial Park Rd, Ebensburg, PA

- Turn left at Mini Mall Road	0.3 mi
- Turn left at US-22	0.1 mi
- Take the ramp onto US-219 N	1.8 mi
- Take the US-219 Bus exit toward Ebensburg	0.4 mi
- Turn left at US-422	49.5 mi
- Take the PA-28 N ramp to New Bethlehem	0.6 mi
- Merge onto PA-28 N	30.9 mi
- Turn left at Summerville / Corsica Rd.	3.9 mi
- Turn left at US-322	2.4 mi
- Turn right at PA-558 / Potter Rd.	0.6 mi
- Turn right at Asbury Rd. / TR-561	0.2 mi
-In one quarter mile turn left at an unnamed dirt roa	ad

- Site A is about a half mile up this road.

-To reach site B continue on TR-561 until you approach a bridge.

-The site is on the right. A yellow gate blocks the access.

APPENDIX E

Project ID: PA1174

Module 8.1A By Project

Monitoring Point: D6

FIOJEC								5			
Coll ID	Seq	Date Collected	Initial Flow	Final Flow	Determ Method	pH pH units	ALK MG/L	HOT A MG/L	FE MG/L	MIN MG/L	AL MG/I
		01/30/2001 03/22/2001		4 12	Meas Meas	3.2 3.0	0.0	476.0 472.0	23.6 8.8	15.6 16.4	65.2 69
7451	134					5.0		• • = • •			
7434	006	05/22/2001	8	8	Meas	3.1	0.0	526.0	4.62	18.5	71.9
7451	189	06/19/2001	4.16	4.16	Meas	3.1	0.0	579.8	6.94	20.7	76.4
7451	263	04/19/2001 05/22/2001 06/19/2001 07/24/2001	6	6	Meas	3.0	0.0	581.8	8.92 12.3	20.9 20.1	79.2 73.9
		08/21/2001	2	2	Maag	3.1 3.0	0.0 0.0	574.4 728.6	25.4	23.1	86.6
		11/29/2001 01/24/2002		3	Meas	3.0	0.0	699.80	20.4	20.8	74.3
7451	040	02/28/2002	3 7	7	Meas	3.0	0.0	702.60	15.3	22	93.7
7411	040	04/30/2002	15	15	Meas	3.0	0.0	658.00	7.6	21.2	94.7
7411	040	06/27/2002	32	32	Meas	3.2	0.0	672.60	2.78	2.1	82.8
		07/25/2002	8	8	Meas	3.1	0.0	549.40	4.23	20.7	82.5 95
7411	040	10/24/2002	,	,		3.0	0.0	626.20	65.1 9.51	22.4 22.3	95
7411	040	11/26/2002	3.5	3.5 3.5	Meas Meas	3.1 3.0	0.0	704.60 671.60	8.8	20.6	84.6
		12/20/2002 01/06/2003		12	Meas	3.0	0.0	549.20	6.6	18.6	75.6
		04/15/2003		23	Meas	3.1	0.0	559.40	2.99	18	71
7411	183	05/29/2003	10	10	Meas	3.0	0.0	575.80	3.32	19.2	74.2
7411	183	07/01/2003				3.1	0.0	558.80	3.42	19	74.6
		08/06/2003		32 9		3.1	0.0	500.40	2.47	18.2	68.3 64.4
		10/07/2003			Meas	3.1	0.0	480.40 494.60	2.26 2.64	17.2 16.5	64.4
		11/06/2003		6 19	Meas	3.1 3.1	0.0	464.00	4.21	16.5	62.3
		12/16/2003 03/11/2004				3.2	0.0	450.00	2.52	19.4	74.6
7411	183	04/15/2004	36	36	Meas	3.2	0.0	498.80	1.57	17.5	68.3
7411	183	05/27/2004	36	36		3.2	0.0	507.60	1.77	16.7	64.1
7411	183	07/29/2004	9	9	Meas	3.2	0.0	449.60	2.62	17.8	63.7
		08/31/2004		39	Meas	3.2	0.0	438.20	1.42	15.3 15.7	57.5 60.2
7411	183	10/27/2004	9	9	Meas	3.2 3.2	0.0	441.20 417.20	2.9 4.78	15.1	58.5
		12/08/2004 02/15/2005		12	Meas	3.2	0.0	434.20	1.9	15.7	56
		03/31/2005		17	Meas	3.2		424.40	.958	14.8	53
7411	183	05/04/2005	17	17	Meas	3.3	0.0	414.00	1	15.8	56.6
7411	183	03/08/2006				3.2	0.0	419.80	1.41	14.3	52
7401	183	06/15/2006				3.2	0.0	383.60	1.32	13.3	50.8
		08/15/2006				3.2	0.0	389.40	1.64 1.28	15.8 14.4	53.4 56.2
		10/11/2006				3.2 3.2	0.0 0.0	372.80 416.20	.8	10.6	39.1
		12/18/2006				3.3	0.0	397.40	.82	13.7	52.9
7401	183	03/14/2007 05/09/2007				3.3	0.0	444.80	.9	15.4	55.6
		08/08/2007				3.3	0.0	416.00	1.55	15.2	57.6
7401	183	10/09/2007				3.3	0.0	453.40	2.19	16.6	54.1
7401	183	12/12/2007				3.3	0.0	397.00	1.09	12.6	51.8
7401	183	06/11/2008				3.3	0.0	424.00	1.217	16.848	65.57 71.24
7401	183	09/10/2008				3.3	0.0	493.80	2.234	17.044	/1.24

Project ID: PA1174

Module 8.1A By Project

Monitoring Point: HNCOL/SAP1

Coll ID	Seq	Date Collected	Initial Flow	Final Flow	Determ Method	pH pH units	ALK MG/L	HOT A MG/L	FE MG/L	MIN MG/L	AL MG/L	SO4 MG/L
7411	184	01/06/2003 04/15/2003				3.6 3.2	0.0	256.20 533.00	2.5 2.68	8.67 17.9	40.1 72.1	489.0 1203.5
		05/29/2003				3.3 3.3	0.0	491.60 519.40	14.8 3	16.4 17.8	9.96 72	1022.9 952.4
		07/01/2003 08/06/2003				3.2	0.0	482.20	2.34	18.1	68.6	1083.7
7411	184	10/07/2003				3.3	0.0	435.60	1.95	15.9	61.6	943.8
		11/06/2003 12/16/2003				3.3 3.2	0.0	428.20 420.00	2.07 1.8	14 15.5	54.4 58.5	995.2 927.9
		03/11/2004				3.3	0.0	474.20	1.63	18.5	72.7	1215.0
		04/15/2004	24	26		3.4	0.0	412.40 490.60	1.71 2.23	14.5 15.1	58.5 59.4	980.3 1102.9
		05/27/2004 07/29/2004	36	36		3.3 3.4	0.0	387.00	2.25	14.8	55.8	870.4
7411	184	08/31/2004				3.3	0.0	384.20	2.64	12.5	47.6	1141.8
		10/27/2004				3.4 3.5	0.0	421.20 272.80	1.87 1.63	15.1 10.1	59.5 39.2	1029.5 613.0
7411	184	12/08/2004 02/15/2005				3.6	0.0	326.00	1.01	10.9	39.8	669.1
7411	184	03/31/2005				3.4	0.0	399.00	1.14	13.7	50.4	1115.5
		05/04/2005 03/08/2006				3.4 3.4	0.0	420.60 385.80	1.55 1.24	14.7 13.1	55.3 46.6	1103.1 937.5
		06/15/2006				3.3	0.0	374.60	2.13	13.2	50	973.5
		08/15/2006				3.4	0.0	351.80	1.93 5.57	14.1 14.1	48.9 60.1	924.1 914.8
		10/11/2006 12/18/2006				3.3 3.3	0.0	412.80 409.00	.843	10.5	39.7	984.1
7401	184	03/14/2007				4.1	4.0	102.40	.362	3.31	12.4	268.7
		05/09/2007 10/09/2007				3.4 3.7	0.0	417.20 427.00	1.34 1.84	15.7 17.4	60.4 57.2	1040.4 1089.4
		06/11/2008				3.4	0.0	403.40	2.406	15.873	62.983	914.4
		09/10/2008				3.4	0.0	461.80	1.61	16.705	66.986	1201.8

10/21/2008

Project ID: PA1174

Module 8.1A By Project

Monitoring Point: HNFLUSH/WET

Pa

Coll ID	Seq	Date Collected	Initial Flow	Final Flow	Determ Method	pH pH units	ALK MG/L	HOT A MG/L	FE MG/L	MN MG/L	AL MG/L	SO4 MG/L	TSS MG/
7486	427	01/06/2003	4	4	Meas	6.4	9.8	11.60	1.99	.516	3.86	26.6	20
7411	189	04/15/2003	2	2	Meas	4.2	0.0	248.80	.429	13.8	35.6	798.9	<2
7411	189	05/29/2003	7	7		4.2	0.0	242.80	.835	17.3	31	809.1	14
7411	189	07/01/2003				4.2	6.4	217.80	1.46	17.2	25.5	795.1	20
		08/06/2003	7.5	7.5		4.2	6.0	228.20	1.34	16.4	31.2	669.1	62
		10/07/2003		6	Meas	4.1	5.0	252.60	.797	17.3	33.8	800.7	8
7411	189	11/06/2003	6	6	Meas	4.1	6.4	270.60	1.05	16.8	33.7	837.9	6
7411	189	12/16/2003				3.4	0.0	259.00	.997	15.9	33.8	719.2	6
		03/11/2004				4.3	8.8	208.00	5.46	15.3	33.8	658.3	328
		04/15/2004				4.4	9.4	190.60	1.26	15.8	29.6	820.7	28
		05/27/2004	10	10		4.2	7.4	207.80	1.04	12.8	26.6	640.8	12
		07/29/2004		8	Meas	4.1	6.2	238.20	1.83	16	31.7	772.0	28.0
		10/27/2004		6	Meas	4.1	8.0	238.60	2.02	16.6	35.7	944.9	12.0
7411	189	12/08/2004	12	12	Meas	4.3	11.0	183.60	5.43	13.2	31.3	634.2	48.0
7411	189	02/15/2005				4.5	9.2	102.00	.817	7.09	12.4	289.1	4.0
		03/31/2005	2	2	Est	4.2	7.6	213.20	.687	12.9	27.2	957.0	4.0
7411	189	05/04/2005	4	4	Meas	4.2	7.4	218.40	1.32	15.6	34.3	877.2	18.0
7411	189	03/08/2006				4.6	13.0	143.40	1.47	14.6	22.9	781.4	40.0
7401	189	06/15/2006				4.5	9.6	233.80	<.3	14.6	32.1	767.0	24.0
7401	189	08/15/2006				4.7	10.4	117.20	5.44	14.1	26.1	796.9	52.0
7401	189	10/11/2006				4.5	9.0	129.20	.431	11.9	20.1	730.5	<3
		12/18/2006				4.5	10.0	166.80	.745	6.75	14.7	546.3	24.0
		03/14/2007				4.6	11.2	64.20	.554	6.36	11.6	463.6	24.0
		05/09/2007				4.4	8.2	152.80	.356	12.7	21.3	792.8	4.0
		06/11/2008				3.8	0.0	225.40	6.764	15.841	34.995	743.3	122

Project ID: PA1174

Module 8.1A By Project

Monitoring Point: HNPONDOUT

Coll ID	Seq	Date Collected	Initial Flow	Final Flow	Determ Method	pH pH units	ALK MG/L	HOT A MG/L	FE MG/L	MN MG/L	AL MG/L	SO4 MG/L	TSS MG/L	NA MG/I
7486	426	01/06/2003	45	45	Meas	6.7	46.4	0.00	2.09	3.82	4.43	400.3	56	
		04/15/2003		20	Meas	6.8	31.0	0.00	.553	10.9	.741	833.6	24	
		08/06/2003		4	neub	7.0	50.0	0.00	.481	6.22	.369	577.9	14	
		10/07/2003	•			4.8	8.2	47.20	.233	7.818	4.383	750.4	18	
		11/06/2003	10	10	Meas	4.6	9.0	85.00	.143	9.75	7.9	722.6	18	
		12/16/2003		20	neub	5.2	9.8	30.80	.204	7.77	2.03	645.7	16	
		03/11/2004	20	20		6.6	36.6	-0.20	.091	8.6	.948	542.3	6	
		04/15/2004				4.8	9.6	86.20	.757	14.4	6.82	890.9	16	
		05/27/2004	40	40		6.9	25.6	37.60	.404	11.1	.911	755.4	58	
		07/29/2004		3	Meas	5.3	10.2	35.40	<.3	11	1.48	760.1	6.0	
		08/31/2004		70	Meas	5.8	11.2	19.60	.475	7.23	.589	625.5	10.0	
		10/27/2004				4.6	11.2	87.00	<.3	14.3	6.89	899.7	6.0	
		12/08/2004	24	24	Meas	4.7	10.2	66.40	.356	10.6	5.85	668.0	<3	
		02/15/2005				4.5	10.0	132.60	<.3	8.38	16.1	529.3	10.0	
		03/31/2005	24	24	Meas	4.5	8.6	79.60	<.3	6.96	7.59	573.2	4.0	
		05/04/2005		12	Meas	4.6	9.6	81.20	<.3	13	8.5	882.5	<3	
		03/08/2006				4.8	9.2	57.20	<.3	10.14	5.863	641.7	<3	
		06/15/2006				4.8	9.2	55.80	<.3	8.88	5.79	788.8	<3	
		08/15/2006				5.3	8.6	9.20	<.3	7.6	1.04	660.8	<3	
		10/11/2006				6.6	14.8	-1.20	<.3	7.32	<.5	607.7	<3	
		12/18/2006				5.0	9.2	55.40	<.3	7.02	2.27	792.3	<3	
		03/14/2007				4.7	10.2	34.80	<.3	4.74	6.14	402.8	8.0	
		05/09/2007				4.4	8.2	135.40	<.3	10.6	15.1	811.4	4.0	
		08/08/2007				4.6	8.6	99.20	<.3	13.5	9.5	989.9	4.0	
		10/09/2007				4.4	7.8	126.80	.823	12.6	14	968.1	8.0	
		12/12/2007												
		06/11/2008				4.3	7.0	112.40	.468	13.664	18.118	853.8	12	
		09/10/2008				4.2	7.0	150.20	.484	15.611	22.67	928.8	30	

Module 8.1A By Project

Project ID: PA1174

Monitoring Point: HNSED1/SAP2

	-						nomicor	ing Foinc	: HNSEDI/	SAPZ			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Initial Flow	Final Flow	Determ Method	pH pH units	ALK MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	נ 1
	7411 4341 7411 7411 7411 7411 7411 7411	186 04/15/2003 001 04/23/2003 186 05/29/2003 186 07/01/2003 186 10/07/2003 186 11/06/2003 186 12/16/2003 186 12/16/2003 186 03/11/2004 186 03/11/2004 186 05/27/2004 186 05/27/2004 186 02/15/2004 186 02/15/2004 186 02/15/2005 186 03/08/2004 186 02/15/2005 186 03/08/2005 186 03/08/2005 186 03/12/2005 186 03/14/2005 186 03/14/2007 186 05/09/2007 186 02/09/2007 186 12/12/2007				7.1 5.1 7.0 7.0 7.5 6.23 4.23 4.23 4.23 4.23 4.24 4.32 4.24 4.32 4.24 4.24 4.24 4.22 4.23 4.24 4.22 4.23 4.24 4.22 4.23 4.24 4.22 4.23 4.22 4.23 4.22 4.23 4.22 4.23 4.22 4.23 4.22 4.23 4.22 4.23 4.22 4.23 4.22 4.23 4.22 4.23 4.22 4.33 4.24 4.33 4.24 4.33 4.24 4.33 4.24 4.33 4.22 4.17 4.17 4.1	5.8 108.2 93.2 148.8 81.8 34.0 48.6 11.0 8.8 9.0 10.2 9.2 10.4 11.6 10.2 9.2 9.0 10.4 11.6 10.2 9.2 9.0 10.4 7.2 9.0 10.0 8.4 7.2 7.8 9.2 12.4 9.0 5.4 8.6 5.4	0.00 83.00 0.00 0.00 0.00 6.80 0.20 118.40 304.00 332.20 211.20 199.20 139.40 244.00 153.80 223.80 265.00 248.00 263.40 101.40 156.80 298.80 223.60 181.80 38.00 271.80	 .802 .315 1.236 .938 1.07 .509 .262 .642 .365 .541 .988 15.2 .334 .433 .365 .492 .39 .442 .483 .501 <.3 .501 <.3 .501 <.3 .501 <.3 .501 <.3 .501 <.3 .501 .501 .501 .501 .501 .501 .501 .501 .501 .501 .329 .422 .321 .329 .444 .779 .891	2.92 17 14.4 16.4 15.8 16.1 13.6 12.5 13.5 15.1 12.8 14.2 15.1 12.8 14.2 10.7 9.59 12.2 14.5 13.6 11.9 12.8 12.2 9.7 7.97 13.7 14.9 12.8 12.2 9.7 7.97 13.7 14.9 12.2 13.7 14.9 12.2 12.2 13.6 12.2 12.2 14.5 13.6 12.2 14.5 13.6 12.2 14.5 13.6 12.2 14.5 13.6 12.2 14.5 13.6 12.2 14.5 13.6 12.2 14.5 13.6 12.2 14.5 13.6 12.2 14.5 13.6 12.2 9.7 7.97 13.7 14.9 12.32 15.204	1.71 5.38 1.708 .606 .302 .933 1.39 19 50.5 48.6 28 19.4 14.7 36.6 23.7 28.7 35.5 39.6 12.8 27.9 39.75 39.75 24.53 39.99 29.33 7.155 45.9994	316.0 1068.8 1073.5 973.0 1013.9 945.4 922.7 911.5 817.1 1045.0 1003.7 908.8 870.6 760.0 958.2 677.7 620.9 1056.1 999.2 830.6 883.0 821.9 933.7 650.2 985.3 1143.6 1026.3 155.9 909.3	124410026222 440 916530 91653000000 46030000 91654600000 9165400000 9165400000 9165400000 9165400000 9165400000 9165400000 9165400000 9165400000 9165400000 916540000000000000000000000000000000

Monitoring Point: HNSAP2/SED2

Coll ID	Seq	Date Collected	Initial Flow	Final Flow	Determ Method	pH pH units	ALK MG/L	HOT A MG/L	FE MG/L	MN MG/L	AL MG/L	SO4 MG/L	T: MO
7411 7411 7411	187 187 187	01/06/2003 04/15/2003 08/06/2003 10/07/2003	20 30	18 20 30	Meas Meas	7.2 7.0 6.9 6.6	107.6 80.0 120.0 75.0	0.00 0.00 0.00 0.00 0.00	1.42 1.23 .145 .09	3.06 14.5 8.15 6.35	.981 <.2 <.2 <.2 <.2	505.7 1004.3 745.2 843.2	20 30 10 4
7411 7411 7411	187 187 187	11/06/2003 12/16/2003 03/11/2004 04/15/2004 05/27/2004	15	5.5 15 25	Meas	7.1 6.6 6.5 4.5	122.0 74.6 72.6 10.6	0.00 0.00 -26.80 131.80	.141 .999 1.45 .847	6.67 13.1 13.3 15	<.2 <.2 3.4 21.3	820.2 811.5 815.0 1067.1	<2 12 14 138
7411 7411 7411	187 187 187	07/29/2004 08/31/2004 10/27/2004 12/08/2004		8	Meas	6.9 6.8 6.9 6.4 6.6	98.0 91.0 80.0 79.8 52.0	-58.40 -58.80 -50.00 -21.40 -8.20	2.56 6 1.34 <.3	10.1 15 8.47 14.2	.512 .61 <.5 .91	787.7 1061.0 707.5 1093.5	4 28.0 4.0 104.
7411 7411 7411	187 187 187	02/15/2005 03/31/2005 05/04/2005 03/08/2006				4.4 4.5 6.4 7.0	11.0 9.6 74.4 80.4	-8.20 171.40 116.80 -25.80 -40.60	<.3 <.3 .406 .644 <.3	9.36 11.5 5.91 13.8 8.71	4.13 23.6 15.2 7.24 <.5	661.7 737.2 544.9 966.7 726.0	18.0 10.0 42.0 26.0
7401 7401 7401	187 187 187	06/15/2006 08/15/2006 10/11/2006 12/18/2006				8.0 6.6 7.1 5.7	96.4 108.0 105.8 22.2	-72.40 -90.60 -84.00 36.20	.411 2.82 .964 <.3	2.66 11.4 10.2 5.79	<.5 <.5 1.54 <.5	728.0 828.9 763.7 693.5 629.4	6.0 14.0 6.0 <3 34.0
7401 7401 7401	187 187 187	03/14/2007 05/09/2007 08/08/2007 10/09/2007 06/11/2008				4.7 5.0 7.8 4.2	12.2 12.2 55.2 5.8	62.00 72.20 -31.60 206.40	<.3 <.3 <.3 .37	6.88 10.9 5.38 16.6	13.9 14.6 <.5 23.9	511.5 919.6 1266.2 1059.1	10.0 48.0 <3 <3
		09/10/2008				6.1 4.1	42.2 4.6	7.00 241.80	4.978 <.3	15.302 16.499	19.092 37.78	885.8 1020.8	138 8

10/21/2008

Project ID: PA1174

Module 8.1A By Project

Monitoring Point: HNSAP1/SED1

15.916

60.483

1111.7

8

Coll Date Initial Final Determ pН ALK HOT A FE MN ID Seq Collected AL S04 TSS Flow Flow Method pH units MG/L MG/L MG/L MG/L ----MG/L MG/L MG/ ____ ------7486 421 01/06/2003 ----------7.2 69.2 0.00 .464 2.98 7411 185 04/15/2003 .979 370.6 20 5.1 9.6 17.5 102.80 1.38 7411 185 05/29/2003 22.4 1105.5 92 6.5 130.2 0.00 2.3 7411 185 07/01/2003 17.1 68.4 1022.0 66 6.6 210.6 0.00 7411 185 08/06/2003 7411 185 10/07/2003 10.5 17.3 .444 1243.0 16 79.6 6.1 0.00 3.22 17.2 13.2 994.6 72 .544 6.1 31.8 13.40 7411 185 11/06/2003 7411 185 12/16/2003 14.1 3.184 944.9 34 6.3 48.4 2.60 .349 12 .665 960.3 2 4.5 11.8 118.20 .754 7411 185 03/11/2004 7411 185 04/15/2004 13.8 25.1 847.3 46 4.2 9.0 293.80 .656 15.9 48 1058.9 22 306.00 237.60 4.2 10.0 7411 185 05/27/2004 7411 185 07/29/2004 1.03 14.7 48.1 1002.6 96 4.3 10.6 3.12 12.8 31.5 826.5 256 4.6 10.4 94.40 1.08 7411 185 08/31/2004 14.6 9.98 781.1 12.0 137.40 235.80 4.4 9.4 .456 8.8 15.4 774.8 7411 185 10/27/2004 18.0 4.3 11.4 1.23 14.3 37.9 980.7 7411 185 12/08/2004 22.0 4.6 10.2 101.60 .419 6.48 13 7411 185 02/15/2005 447.5 10.0 6.2 23.0 22.80 2.44 .471 6.43 7411 185 03/31/2005 94.7 32.0 4.3 11.2 213.20 27.7 .506 10.9 7411 185 05/04/2005 1009.6 98.0 4.4 11.0 185.20 3.94 12.3 24.1 7411 185 03/08/2006 900.6 610.0 4.4 11.0 230.60 .544 9.39 7401 185 06/15/2006 26.4 735.8 18.0 4.6 9.6 118.00 1.06 11.7 873.3 7401 185 08/15/2006 16.2 22.0 4.3 7.8 189.00 3.11 13.6 35.3 7401 185 10/11/2006 857.3 8.0 9.4 4.4 273.60 .921 12.9 7401 185 12/18/2006 44 880.2 10.0 4.5 10.6 196.20 <.3 9.02 26.2 7401 185 03/14/2007 711.6 44.0 6.8 19.4 -3.80 .42 .176 7401 185 05/09/2007 1 55.5 28.7 16.0 3.4 0.0 413.80 1.39 14.6 7401 185 08/08/2007 1030.7 10.0 4.4 9.0 234.80 1.11 14.6 30.6 7401 185 10/09/2007 1008.8 26.0 4.2 6.2 184.20 .827 14.2 1040.4 7401 185 09/10/2008 20.8 36.0 3.5 0.0 413.20 1.343

Pa

Project ID: PA1174

MINT	N T	004	maa	
)				

Page 1

							5		UND .			
Coll ID Seq (Collected	Initial Flow	Flow	Method	pH pH units		HOT A MG/L	FE MG/L	MN MG/L	AL MG/L	SO4 MG/L	TSS MG/L
7486 425 0 7411 190 0 7411 190 0 7411 190 0 7411 190 0 7411 190 1 7411 190 1 7411 190 1 7411 190 0 7411 190 0 7411 190 0 7411 190 1 7411 190 1 7411 190 0 7411 190 0	01/06/2003 04/15/2003 05/29/2003 07/01/2003 10/07/2003 11/06/2003 12/16/2003 12/16/2003 03/11/2004 04/15/2004 05/27/2004 05/27/2004 10/27/2004 10/27/2004 10/27/2004 10/27/2004 10/27/2004 10/27/2004 10/27/2005 03/08/2005 03/08/2006 08/15/2006 03/14/2007 05/09/2007 08/08/2007	3.5	3.5	Meas	6.8 7.0 4.5 4.5 6.8 4.4 4.6	69.0 52.4 0.6 8.0 66.4 9.6 37.6 36.4 9.6 37.6 36.4 9.6 37.6 36.4 9.8 14.4 10.6 36.8 11.4 10.2 9.2 10.2 11.0 11.6 9.6 17.2 10.2 11.0 11.2 9.2 8.6 9.2	0.00 0.00 151.40 95.40 0.00 107.60 97.20 12.40 10.60 117.60 51.40 46.80 13.80 118.60 34.40 156.80 109.60 199.40 37.20 7.00 40.80 71.60 90.00 104.20 288.20	2.22 .741 6.7 1.73 .504 .332 .426 .339 .51 .68 1.23 .48 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3	3.95 12.8 17.1 15.3 7.94 8.53 11.7 11.9 15.8 10.8 11 6.84 16.2 10.4 10.3 9.75 14.2 11.68 14.2 7.8 7.33 6.46 6.97 10.8 13.5 15.7	4.44 .714 26.4 8.8 2.15 10 4.01 3.41 14.8 5.12 4.49 9.43 12.6 4.64 19.9 10.4 4.9 10.4 4.9 16.73 31.7 7.1 5.73 3.9 12.7 9.3 10.2 81.8		MG/L 52 8 194 2 6 30 4 28 22 18 34 28.0 34.0 6.0 34.0 6.0 34.0 6.0 218.0 218.0 22.0 12.0 18.0 4.0 6.0 514.0
						5.8	275.40	7.858	17.696	53.613	972.0	86

10/	21/	2008	
-----	-----	------	--

Module 8.1A By Project

.

Page 1

Project ID: PA1174				Monitor	ing Point	: HNSED2/	WET			
Coll Date Initi ID Seq Collected Flow		Determ Method	pH pH units	ALK MG/L	HOT A MG/L	FE MG/L	MIN MG/L	AL MG/L	SO4 MG/L	TSS MG/L 1
7486 424 01/06/2003 7411 188 04/15/2003 7411 188 06/2003 7411 188 01/06/2003 7411 188 10/07/2003 6 7411 188 11/06/2003 7411 188 12/16/2003 6 7411 188 12/16/2003 7 7411 188 03/11/2004 7 7411 188 05/27/2004 7 7411 188 07/29/2004 7 7411 188 07/29/2004 9.5 7411 188 08/31/2004 9.5 7411 188 08/31/2004 9.5 7411 188 08/31/2004 9.5 7411 188 02/15/2005 7 7411 188 03/31/2005 7 7411 188 03/08/2006 7 7401 188 06/15/2006 7 7401 188 03/14/2007 7 7401 188 05/09/2007 7	6 9.5	Meas	7.2 7.2 7.2 7.2 7.0 6.1 4.6 7.3 4.3 4.6 6.7 7.6 4.6 7.3 4.3 4.6 6.7 7.6 4.6 7.5 6.6 4.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.6 7.5 6.8 5.5 6.6 7.5 6.8 6.9 8.5 6.8 6.8 6.8 7.5 6.8 6.9 8.5 6.8 6.9 7.5 6.8 6.9 8.5 6.8 7.5 6.8 6.9 8.5 7.5 7.5 7.5 6.8 7.5 7.5 6.9 8.5 7.5	$\begin{array}{c}\\ 100.2\\ 64.8\\ 104.0\\ 54.8\\ 55.6\\ 78.6\\ 39.2\\ 10.2\\ 72.0\\ 64.0\\ 65.6\\ 8.4\\ 36.8\\ 47.6\\ 11.0\\ 9.6\\ 33.8\\ 77.0\\ 100.2\\ 91.0\\ 84.0\\ 48.0\\ 12.2\\ 9.6\\ 55.0\\ 48.6\\ 57.0\\ 9.8 \end{array}$	$\begin{array}{c}$	1.61 .814 .227 .225 .115 .625 .438 .641 .673 .302 .617 8.05 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3	3.28 12.3 7.09 3.649 2.92 11.3 12 15.8 10.7 9.16 6.96 12.2 13.8 10.4 10.4 9.73 13.6 9.61 2.66 6.4 7.15 6.71 7.33 10.8 6.41 .141 8.09 14.915	1.55 <.2 <.2 <.2 <.2 <.2 <.2 3.95 15.3 .682 <.5 28.2 .777 2.83 5 10.1 3.52 .68 <.5 5 21.5 1.29 1.74 6.96 1.61 <.5 1.88 8.656	489.4 923.2 668.2 812.7 827.1 757.8 764.2 1055.3 740.5 1068.4 733.6 771.2 1093.5 671.2 1093.5 671.2 673.6 874.7 981.6 728.9 874.8 702.1 648.3 894.4 623.1 904.0 1345.6 1185.1 485.0 865.6	32 12 14 14 10 24 28 14 6.0 4.0 50.0 24.0 12.0 12.0 12.0 12.0 22.0 16.0 12.0 22.0 16.0 12.0 22.0 16.0 10.0 6.0 4.0 50.0 22.0 16.0 10.0 50

BAMR Monitoring Point ID: HNPONDOUT (191)

Final Pond discharge. Sampled from outlet of principal spillway pipe from Final Pond into

Description:

Spillway.

NOTES:

Small red italicized entries indicate lowest detectable limit. Sample analysis for this parameter was

									1		
				Field	Aci	dity	AI	kalinity			
SAMPL	E	Flow	рΗ	Conductivity	Total	Net	Total	Net	Total	Fe	rrous
				Conductivity	Lab "Hot"	Calculated	Lab	Calculated	Fe	Fe ⁺²	% 1
Date	Source	(gpm)	(lab)	(umhos/cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(
01/06/2003	7486-426	45.0	6.7	-	0.000	0.000	46.400	46.400	2.090	0.160	0.0
04/15/2003	7411-191	20.0	6.8	-	0.000	0.000	31.000	31.000	0.553	0.190	0.:
05/29/2003	7411	No Flo	w - No	Sample Taken	-	-	-	-	-	-	
07/01/2003	7411	No Flo	w - No	Sample Taken	-	-	-	-	-	-	
08/06/2003	7411-191	4.0	7.0	-	0.000	0.000	50.000	50.000	0.481	0.110	0.2
09/09/2003	7411-191	-	6.6	-	0.000	0.000	22.400	22.400	0.086	0.080	0.9
10/07/2003	7411-191	3.5	4.8	-	47.200	39.000	8.200	0.000	0.233	0.070	0.
11/06/2003	7411-191	10.0	4.6	-	85.000	76.000	9.000	0.000	0.143	0.110	0.7
02/15/2005	7411-191	-	4.5	-	132.600	122.600	10.000	0.000	0.300	0.150	0.
03/31/2005	7411-191	24.0	4.5	-	79.600	71.000	8.600	0.000	0.300	0.130	0.4
03/08/2006	7411-191	-	4.8	-	57.200	57.200	9.200	0.000	0.300	0.130	0.4
06/15/2006	7401191	-	4.8	-	55.800	46.600	9.200	0.000	0.300	0.150	0.
08/15/2006	7401191	-	5.3	-	9.200	0.600	8.600	0.000	0.300	0.110	0.:
10/11/2006	7401191	-	6.6	-	-1.200	0.000	14.800	16.000	0.300	0.020	0.0
12/18/2006	7401191	-	5.0	-	55.400	46.200	9.200	0.000	0.300	0.040	0.1
03/14/2007	7401191	-	4.7	-	34.800	24.600	10.200	0.000	0.300	0.080	0.2
05/09/2007	7401191	-	4.4	-	135.400	127.200	8.200	0.000	0.300	0.100	0.:
08/08/2007	7401191	-	4.6	-	99.200	90.600	8.600	0.000	0.300	0.000	0.0
10/09/2007	7401191	-	4.4	-	126.800	119.000	7.800	0.000	0.823	0.000	0.0
12/12/2007	7401191	-	5.7	-	10.200	0.000	10.400	0.200	0.300	0.120	0.4
06/11/2008	7401191	-	4.3	-	112.400	105.400	7.000	0.000	0.468	0.290	0.0
09/10/2008	7401191	-	4.2	-	150.200	143.200	7.000	0.000	0.484	0.220	0.4
		-		-		0.000		0.000			#D
		-		-		0.000		0.000			#D
	Always inse	ert a row	here fo	r entering new sar	mple data in o	rder for statist	ics to cald	culate correctly	y.		
Number Of	Count	6.0	20.0	0.00	20.00	22.00	20.00	22.00	20.000	20.000	20.
Sample Dates	Max	45.0	7.0	0.00	150.20	143.20	50.00	50.00	2.090	0.290	#D
22	Min	3.5	4.2	0.00	-1.20	0.00	7.00	0.00	0.086	0.000	#D
	Average	17.8	5.2	#DIV/0!	59.49	48.60	14.79	7.55	0.433	0.113	#D

.

	ALD	T	50
ALD	ALD		

Project ID: PA1174			Monitor	ring Point	- MARKEL	A	LD TO	S-e
2			Homeon	ing roint	. Phancis	- UL	Influe	-t
	l Final Determ	pH	ALK	HOT A	FE	MN	AL	SC
ID Seq Collected Flow	Flow Method	pH units	MG/L	MG/L	MG/L	MG/L	MG/L	MG
7486 416 01/06/2003		6.3	82.4	39.40	106	21.5	<.2	974.
7485 714 03/14/2003		6.4	119.4	24.00	114	20.3	<.2	916.
7411 181 03/19/2003		5.9	45.6	151.80	83.7	22.4	.942	926.
7411 181 04/15/2003		6.3	112.6	60.80	112	19.5	<.2	1188
7411 181 05/29/2003		6.4	124.4	66.80	117	20.9	<.2	987.
7411 181 07/01/2003		6.1	59.0	95.00	118	20.2	<.2	1026
7411 181 08/06/2003		6.4	157.0	64.60	114	20.1	<.2	1041
4301 232 08/19/2003		6.3	159.8	64.00	110	18.8	<.2	972.
7411 181 10/07/2003		6.2	121.0	62.40	105	19.5	<.2	1011
4301 266 10/08/2003		6.3	142.0	78.60	105	18.7	<.2	979.
7411 181 11/06/2003		6.2	119.4	69.00	110	19.3	<.2	1010
7411 181 11/25/2003		6.5	158.0	0.00	96.5	17.8	<.2	1043
7411 181 12/16/2003		6.5	158.0	0.00	110	19.1	<.2	982.
4301 297 03/10/2004		6.3	64.6	62.80	114	20	<.2	888.
7411 181 03/11/2004		6.3	131.8	62.60	116	19.3	<.2	958.
7411 181 04/15/2004		6.4	113.4	87.60	102	18.3	<.2	966.
7411 181 05/27/2004			169.8	92.40	95	17.1	<.2	942.
7411 181 07/29/2004		6.0	89.0	54.20	98.4	18.9	<.5	962.
4301 400 08/11/2004		6.4	155.2	58.40	90.4	16.1	<.5	932.
4301 403 08/13/2004		6.3	124.6	74.00	95.3	17.7	<.5	845.
7411 181 08/31/2004		6.1	99.4	65.00	90.9	16.3	<.5	1053
7411.181 10/27/2004		6.4	158.6	65.20	90.3	16.6	<.5	988.
7411 181 12/08/2004		6.6	172.0	54.80	91.9	17	<.5	820.
7411 181 02/02/2005		6.5	133.6	68.40	88.9	15.9	<.5	999.
7411 181 03/31/2005		6.4	141.4	60.80	90.3	16.4	<.5	1062
7411 181 05/04/2005		6.4	109.6	64.00	92.7	16.9	<.5	913.
7411 181 07/20/2005		6.2	102.8	56.20	90.9	16.6	<.5	>300
7411 181 09/01/2005		6.5	183.6	71.80	91.3	16.6	<.5	915.
7411 181 03/08/2006		6.5	156.6	-34.60	98.47	17.77	<.5	850.
7401 181 06/15/2006			66.6	44.20	87.1	15.7	<.5	965.
7401 181 08/15/2006		6.2	72.6	37.40	98.3	17.9	<.5	932.
7401 181 12/18/2006		6.6	186.0	90.60	71.1	12.8	<.5	896.
4301 054 03/27/2007		6.6	179.8	44.40	88.9	16.9	<.5	947.
7401 181 05/09/2007		6.5	141.2	74.60	88	15.2	<.5	884.

Project ID: PA1174

.

Monitoring Point: MARKELFINAL

.

. .

Date Seq Collected	Initial Flow	Final Flow	Determ Method	pH pH units	ALK MG/L	HOT A MG/L	FE MG/L	MN MG/L	AL MG/L	SO4 MG/L
702 01/09/2003 715 03/14/2003 182 03/19/2003	238 185.3	238 185.3	Meas Meas	6.2 6.2 6.3 6.4	50.0 55.8 71.4 146.8	115.20 90.20 72.20 41.80	87.1 85.9 73.6 115	20.6 19.8 18.5 20.5	<.2 <.2 <.2 <.2 <.2	827.8 912.1 943.0 1055.5
182 05/29/2003 182 07/01/2003 219 07/24/2003	281	281	Meas	6.0 6.2 6.3 6.2 6.2	42.6 53.4 128.2 89.8 87.6	120.20 65.40 107.40 112.20	72 69.3 69.1 67.6	20 20.2 18.4 18	<.2 <.2 <.2 <.2	881.5 877.6 1030.4 880.3 900.6
182 08/06/2003 230 08/19/2003 182 10/07/2003	172 206	154 172 206	Meas Meas	6.2 6.1 6.0	90.8 74.2 52.8	82.20 88.60 99.60 95.40	74.1 67.7 71.2	19.7 19.7	<.2 <.2	955.1 959.3 952.3 971.7
182 11/06/2003 277 11/24/2003 182 11/25/2003	84 164 154	84 164 154	Meas Meas Meas	6.2 6.4 6.4	87.4 79.2 70.6	88.80 88.20 70.60	77.5 74.8 70.5	17.9 18.1 17.1	<.2 <.2 <.2	969.0 835.7 943.0 875.5
299 03/10/2004 182 03/11/2004	164	171 164 188	Meas Meas	6.4 6.3 6.3 6.3	109.4 71.4 76.6 59.6	64.60 64.60 60.20 90.60	75.5 72.5 66.1	18.4 18.3 16.9	<.2 <.2 <.2	855.7 894.6 863.3
182 05/27/2004 182 07/29/2004 407 08/09/2004	206 171	206 171	Meas	6.3 6.0 6.4	101.4 68.0 122.0 59.0	91.40 49.20 53.40 48.20	70.6 65.3	17.9 17.7	<.5 <.5	867.2 874.6 1010.1 911.4
405 08/13/2004 182 08/31/2004 182 10/27/2004	171	171	Meas	6.2 6.0 6.4	60.2 74.2 95.4	70.80 64.80 74.00	40.6 62.2 67.1	17.4 15.2 16.7	<.5 <.5 <.5	925.0 983.3 946.6 774.9
182 02/02/2005 182 03/31/2005 182 05/04/2005	84 94 171	84 94 171	Est Meas Meas	6.5 6.4 6.4	115.8 83.4 59.2 ·	80.20 12.20 59.00	71 57 55.8	15.5 15.2 16.4	<.5 <.5 <.5	831.6 1030.2 885.2
182 09/01/2005 182 03/08/2006 182 06/15/2006 182 12/18/2006 055 03/27/2007		138	Meas	6.4 6.1 6.6 6.5	117.0 74.6 49.0 103.4 96.8	62.60 59.00 46.00 81.60 38.40	62.5 59.1 56.2 51.1 67.1	15.7 17.96 15.3 12.1 16.9	<.5 <.5 <.5 <.5 <.5	>300.0 874.2 868.6 956.0 872.8 920.5 877.8
	Seq Collected 	Seq Collected Flow 417 01/06/2003 238 702 01/09/2003 185.3 715 03/14/2003 182 03/19/2003 182 05/29/2003 281 182 07/01/2003 219 07/24/2003 220 07/24/2003 182 08/06/2003 154 230 08/19/2003 172 182 10/07/2003 206 264 10/08/2003 165 182 11/06/2003 84 277 11/24/2003 164 182 11/25/2003 154 182 12/16/2003 154 182 03/11/2004 164 182 03/11/2004 164 182 03/11/2004 188 182 05/27/2004 206 182 07/29/2004 171 407 08/09/2004 401 08/11/2004	Seq Collected Flow Flow 417 01/06/2003 238 238 702 01/09/2003 185.3 185.3 715 03/14/2003 182 03/19/2003 185.3 185.3 715 03/14/2003 182 05/29/2003 281 281 182 07/01/2003 20 07/24/2003 20 07/24/2003 154 154 230 08/19/2003 172 172 182 10/07/2003 206 206 264 10/08/2003 165 165 182 11/06/2003 84 84 277 11/24/2003 164 164 182 11/25/2003 154 154 182 12/16/2003 171 171 299 03/10/2004 164 164 182 03/11/2004 182 04/15/2004 188 188 182 05/27/2004 206 206 182 07/29/2004 171 171 407 08/09/2004 401 08/11/2004 405 08/13/2004 405 08/13/2004 406 08/13/2004 407 08/09/2004 407 08/09/2004 408 08/31/2004 182 02/02/2005 84 84 182 03/31/2005 94 94 182 03/31/2005 171 171 182 07/20/2005 138 138 182 09/01/2005 182 03/08/2006 182 03/08/2006 182 03/27/2007	Seq Collected Flow Flow Method 417 01/06/2003 238 238 Meas 702 01/09/2003 185.3 185.3 Meas 715 03/14/2003 182 03/19/2003 281 281 Meas 182 07/01/2003 20 07/24/2003 281 281 Meas 182 07/01/2003 281 281 Meas 182 07/01/2003 281 281 Meas 182 07/24/2003 281 281 Meas 182 08/06/2003 154 154 230 08/19/2003 172 172 Meas 182 10/07/2003 206 206 Meas 264 10/08/2003 165 165 182 11/06/2003 84 84 Meas 182 11/25/2003 154 154 Meas 182 12/16/2003 154 154 Meas 182 03/11/2004 164 164 Meas 182 03/11/2004 164 164 Meas 182 03/11/2004 188 188 Meas 182 05/27/2004 206 206 182 07/29/2004 171 171 Meas 182 08/31/2004 171 171 Meas 182 10/27/2004 33 33 Meas 182 02/02/2005 84 84 Est 182 03/31/2005 94 94 Meas 182 03/31/2005 94 94 Meas 182 03/31/2005 171 171 Meas 182 03/31/2005 171 171 Meas 182 02/02/2005 138 138 Meas 182 03/31/2005 94 94 Meas 182 03/31/2005 171 171 Meas 182 03/31/2005 171 171 Meas 182 03/31/2005 171 171 Meas 182 03/31/2005 171 171 Meas 182 03/31/2005 94 94 Meas 182 03/31/2005 171 171 Meas 182 03/31/2005 171 171 Meas 182 03/31/2005 171 171 Meas 182 03/31/2005 171 171 Meas 182 03/31/2005 94 94 Meas 182 03/31/2005 171 171 Meas 182 03/08/2006 182 03/08/2006 182 03/08/2006 182 12/18/2006 055 03/27/2007	Seq Collected Flow Flow Method pH units 417 01/06/2003 238 238 Meas 6.2 702 01/09/2003 185.3 185.3 Meas 6.2 715 03/14/2003 6.4 6.3 6.3 182 03/19/2003 6.4 6.2 182 04/15/2003 6.3 6.2 182 05/29/2003 281 281 Meas 6.2 182 07/01/2003 6.2 6.2 6.2 6.2 200 07/24/2003 6.2 6.2 6.2 6.2 182 08/06/2003 154 154 6.2 2 182 10/07/2003 206 206 Meas 6.4 182 10/07/2003 165 165 6.2 182 11/06/2003 171 171 6.4 2 277 11/24/2003 164 164 Meas 6.3 182 03/	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Seq Collected Flow Plow Method pH units MG/L MG/L 117 01/06/2003 238 238 Meas 6.2 50.0 115.20 702 01/09/2003 185.3 185.3 Meas 6.2 55.8 90.20 715 03/14/2003 6.4 146.8 41.80 82 03/19/2003 6.4 146.8 41.80 182 03/19/2003 6.2 53.4 120.20 182 03/19/2003 6.2 83.4 120.20 182 05/29/2003 281 281 Meas 6.2 89.8 107.40 210 07/24/2003 6.2 87.6 112.20 128 08/06/2003 154 154 6.2 90.8 82.20 230 08/19/2003 172 172 Meas 6.1 74.2 88.60 277 11/24/2003 155 165 6.2 66.2 95.40 182 11/06/2003 154 154 Meas 6.4 70.6 70.60 182 121/06/2003 154 154 Meas 6.3 71.	Seq Collected Flow Flow Method pH units MG/L MG/L </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

APPENDIX H

Water Quality Data Summary

Markel ALD system

PA 1174

Clarion County Clarion TWP

SIS Monitoring Point Alias ID: (181)

. . . .

70951

Description: Discharge from ald into sed pond Sampled at 2 ft. rectangular weir.

MARKEL:MARKELALD											
					Acidity		Alkalinity		Irc		
				Field	Total	Net	Total	Net	Total		rous
Samp	le	Flow	рН	Conductivity	Lab "Hot"	Calculated	Lab	Calculated	Fe	Fe ⁺²	% T
Date	Source	(gpm)	(lab)	(umhos/cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	%
12/20/2002	7411-042	-	6.4	-	28.00	0.00	133.60	105.60	114.000	98.490	0.8
1/6/2003	7486-416	-	6.3	-	39.40	0.00	82.40	43.00	106.000	104.000	0.9
1/9/2003	Sample Tak	ken		-	-	-	-	-	-	-	-
3/14/2003	7485-714	-	6.4	1753.00	24.00	0.00	119.40	95.40	114.000	94.600	0.8
3/19/2003	7411-181	-	5.9	1546.00	151.80	106.20	45.60	0.00	83.700	-	-
4/15/2003	7411-181	-	6.3	1764.00	60.80	0.00	112.60	51.80	112.000	-	-
5/29/2003	7411-181	-	6.4	1721.00	66.80	0.00	124.40	57.60	117.000	-	-
7/1/2003	7411-181	-	6.1	-	95.00	36.00	59.00	0.00	118.000	67.000	0.5
7/24/2003						0.00		0.00			#DI
2/2/2005	7411-181	-	6.5	-	68.40	0.00	133.60	65.20	88.900	110.220	1.0
3/31/2005	7411-181	-	6.4	-	60.80	0.00	141.40	80.60	90.300	109.320	1.0
5/4/2005	7411-181	-	6.4	-	64.00	0.00	109.60	45.60	92.700	101.080	1.0
7/20/2005	7411-181	-	6.2	-	56.20	0.00	102.80	46.60	90.900	99.400	1.0
9/1/2005	7411-181	-	6.5	-	71.80	0.00	183.60	111.80	91.300	101.080	1.0
3/8/2006	7411181	-	6.5	-	-34.60	0.00	156.60	191.20	98.470	106.280	1.0
6/15/2006	7401181	-	6.0	-	44.20	0.00	66.60	22.40	87.100	99.210	1.0
8/15/2006	7401181	-	6.2	-	37.40	0.00	72.60	35.20	98.300	97.560	0.9
12/18/2006	7401181	-	6.6	-	90.60	0.00	186.00	95.40	71.100	107.730	1.0
3/27/2007	4301054	-	6.6	-	44.40	0.00	179.80	135.40	88.900	0.000	0.0
5/9/2007	7401181	-	6.5	-	74.60	0.00	141.20	66.60	88.000	104.320	1.0
						0.00		0.00			#DI
						0.00		0.00			#DI

Always insert a row here for entering new sample data in order for statistics to calculate correctly.